Two-dimensional quantum random walk
نویسندگان
چکیده
We analyze several families of two-dimensional quantum random walks. The feasible region (the region where probabilities do not decay exponentially with time) grows linearly with time, as is the case with one-dimensional QRW. The limiting shape of the feasible region is, however, quite different. The limit region turns out to be an algebraic set, which we characterize as the rational image of a compact algebraic variety. We also compute the probability profile within the limit region, which is essentially a negative power of the Gaussian curvature of the same algebraic variety. Our methods are based on analysis of the space-time generating function, following the methods of [PW02].
منابع مشابه
Dynamical Localization for d-Dimensional Random Quantum Walks
We consider a d-dimensional random quantum walk with site-dependent random coin operators. The corresponding transition coefficients are characterized by deterministic amplitudes times independent identically distributed site-dependent random phases. When the deterministic transition amplitudes are close enough to those of a quantum walk which forbids propagation, we prove that dynamical locali...
متن کاملOptical implementation of one-dimensional quantum random walks using orbital angular momentum of a single photon
Photons can carry orbital angular momentum (OAM), which offers a practical realization of a high-dimensional quantum information carrier. In this paper, by employing OAM of a single photon, we propose an experimental scheme to implement one-dimensional two-state quantum random walks on an infinite line. Furthermore, we show that the scheme can be used to implement one-dimensional three-state qu...
متن کاملThe quantum to classical transition for random walks
We look at two possible routes to classical behavior for the discrete quantum random walk on the line: decoherence in the quantum “coin” which drives the walk, or the use of higher-dimensional coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior, and find analytical expressions for this in the long-time limit; we see that the multicoin ...
متن کاملErratum to: Dynamical localization for d-dimensional random quantum walks
We consider a d-dimensional random quantum walk with site-dependent random coin operators. The corresponding transition coefficients are characterized by deterministic amplitudes times independent identically distributed site-dependent random phases. When the deterministic transition amplitudes are close enough to those of a quantum walk which forbids propagation, we prove that dynamical locali...
متن کاملSymmetricity of Distribution for One-dimensional Hadamard Walk
In this paper we study a one-dimensional quantum random walk with the Hadamard transformation which is often called the Hadamard walk. We construct the Hadamard walk using a transition matrix on probability amplitude and give some results on symmetricity of probability distributions for the Hadamard walk.
متن کاملSymmetry of Distribution for the One-dimensional Hadamard Walk
In this paper we study a one-dimensional quantum random walk with the Hadamard transformation which is often called the Hadamard walk. We construct the Hadamard walk using a transition matrix on probability amplitude and give some results on symmetry of probability distributions for the Hadamard walk.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008